If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-96=60x
We move all terms to the left:
6x^2-96-(60x)=0
a = 6; b = -60; c = -96;
Δ = b2-4ac
Δ = -602-4·6·(-96)
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{41}}{2*6}=\frac{60-12\sqrt{41}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{41}}{2*6}=\frac{60+12\sqrt{41}}{12} $
| .25x=150000 | | 62=14v-5v | | 8/x=9/3x-7 | | -158=4-9b | | -2(x-16)=-10 | | -2(x-10)=16 | | 5x^2-6x=-3 | | 7k+8+40+90=180 | | 10x-29=4.3x+4 | | 5t+6+49+90=180 | | 2r^2-11r-15=0 | | 12t-8t=-2 | | 28=32x-4x^2 | | 4m-29=3 | | 2(x+3)+x=180 | | 3+2c=2(2+c) | | 18x=x^2-19 | | 3(17)-4+90+7y-20=180 | | 1.15x=x+3 | | 2(x+3)=104 | | P(x)=-5x^{2}+80x-140 | | 10n+30=130 | | 5x+5+8x-6=90 | | ⅜x+15/2=18 | | x=(3x(2304)/4)^3 | | −6 | | −6 | | −6 | | −6 | | 24x+16x=100 | | 24x+8Y=100 | | (3x-2)(x+2)=-4 |